San Lu
Assistant Researcher
2713 Geology
slu@igpp.ucla.edu

About

  • Born and raised in Jiujiang (九江), China, December 21th, 1987
  • B.S. in Geophysics, University of Science and Technology of China, June 2009
  • Ph.D. in Space Physics, University of Science and Technology of China, June 2014
  • Visiting Scholar, Auburn University, October 2012 – October 2013
  • Postdoctoral Researcher, University of Science and Technology of China, May 2014 – October 2015
  • Assistant Researcher, University of California, Los Angeles, October 2015 – present

Research Topics

I use particle-in-cell and hybrid simulations to study explosive phenomena, waves, instabilities, and particle energizations in plasma physics. My research includes macro- and micro-instabilities, waves, and energy conversions in magnetic reconnection; particle-in-cell simulations of laser-driven magnetic reconnection experiment; three-dimensional global-scale hybrid simulations of the Earth’s foreshock transients and magnetospheric physics (e.g., magnetotail reconnection, flux ropes, dipolarization fronts, and dawn-dusk asymmetries).

Interests

Soccer, movies, music, and Chinese cross talks

Selected Publications

  1. Lu, S., P. L. Pritchett, V. Angelopoulos, A. V. Artemyev (2018), Magnetic reconnection in Earth's magnetotail: Energy conversion and its earthward-tailward asymmetry, Physics of Plasmas, 25, 012905, doi:10.1063/1.5016435.
  2. Lu, S., Pritchett, P. L., Angelopoulos, V. & Artemyev, A. V. (2018). Formation of Dawn-Dusk Asymmetry in Earth's Magnetotail Thin Current Sheet: A Three-Dimensional Particle-in-Cell Simulation. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1002/2017JA025095
  3. Lu, S., Artemyev, A. V., & Angelopoulos, V. (2017). Electron cooling and isotropization during magnetotail current sheet thinning: Implications for parallel electric fields. Journal of Geophysical Research: Space Physics, 122. https://doi.org/10.1002/2017JA024712
  4. Lu, S., A. V. Artemyev, V. Angelopoulos, Y. Lin, and X. Y. Wang (2017), The ion temperature gradient: An intrinsic property of Earth’s magnetotail, J. Geophys. Res. Space Physics, 122, 8295–8309, doi:10.1002/2017JA024209.
  5. Lu, S., Y. Lin, V. Angelopoulos, A. V. Artemyev, P. L. Pritchett, Q. Lu, and X. Y. Wang (2016), Hall effect control of magnetotail dawn-dusk asymmetry: A three-dimensional global hybrid simulation, J. Geophys. Res. Space Physics, 121, 11,882–11,895, doi:10.1002/2016JA023325.
  6. Lu, S., V. Angelopoulos, and H. Fu (2016), Suprathermal particle energization in dipolarization fronts: Particle-in-cell simulations, J. Geophys. Res. Space Physics, 121, 9483–9500, doi:10.1002/2016JA022815.
  7. Lu, S., A. V. Artemyev, V. Angelopoulos, Q. Lu, and J. Liu (2016), On the current density reduction ahead of dipolarization fronts, J. Geophys. Res. Space Physics, 121, 4269-4278, doi:10.1002/2016JA022754.
  8. Lu, S., Q. M. Lu, F. Guo, Z. M. Sheng, H. Y. Wang, S. Wang (2016), Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection, New J. Phys., 18, 013051, doi:10.1088/1367-2630/18/1/013051.
  9. Lu, S., Q. M. Lu, Y. Lin, X. Y. Wang, Y. S. Ge, R. S. Wang, M. Zhou, H. S. Fu, C. Huang, M. Y. Wu, and S. Wang (2015), Dipolarization fronts as earthward propagating flux ropes: A three-dimensional global hybrid simulation, J. Geophys. Res. Space Physics, 120, 6286-6300, doi:10.1002/2015JA021213.
  10. Lu, S., Y. Lin, Q. M. Lu, X. Y. Wang, R. S. Wang, C. Huang, M. Y. Wu, and S. Wang (2015), Evolution of flux ropes in the magnetotail: A three-dimensional global hybrid simulation, Phys. Plasmas, 22, 052901, doi:10.1063/1.4919615.
  11. Lu, S., Q. M. Lu, C. Huang, Q. L. Dong, J. Q. Zhu, Z. M. Sheng, S. Wang, and J. Zhang (2014), Formation of super-Alfvénic electron jets during laser-driven magnetic reconnection at the Shenguang-II facility: particle-in-cell simulations, New J. Phys. 16, 083021, doi:10.1088/1367-2630/16/8/083021.
  12. Lu, S., Q. M. Lu, Q. L. Dong, C. Huang, S. Wang, J. Q. Zhu, Z. M. Sheng, and J. Zhang, Particle-in-cell simulations of magnetic reconnection in laser-plasma experiments on SG-II facility (2013), Phys. Plasmas 20, 112110, doi: 10.1063/1.4832015.
  13. Lu, S., Q. M. Lu, C. Huang, and S. Wang (2013), The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection, Phys. Plasmas 20, 061203, doi:10.1063/1.4811119.
  14. Lu, S., Q. M. Lu, X. Shao, P. H. Yoon, and S. Wang (2011), Weibel Instability and structures of magnetic island in anti-parallel collisionless magnetic reconnection, Phys. Plasmas 18, 072105, doi:10.1063/1.3605029.
  15. Lu, S., Q. M. Lu, Y. Cao, C. Huang, J. L. Xie, and S. Wang (2011), The effects of the guide field on the structures of electron density depletions in collisionless magnetic reconnection, Chinese Science Bulletin 56, 48-52, doi:10.1007/s11434-010-4250-9.
  16. Lu, Q. M., S. Lu, C. Huang, M. Y. Wu, and S. Wang (2013), Self-reinforcing process of the reconnection electric field in the electron diffusion region and onset of collisionless magnetic reconnection, Plasma Phys. Control. Fusion 55, 085019, doi:10.1088/0741-3335/55/8/085019.
  17. Lin, Y., X. Y. Wang, S. Lu, J. D. Perez, and Q. M. Lu (2014), Investigation of Storm-Time Magnetotail and Ion Injection Using Three-Dimensional Global Hybrid Simulation, J. Geophys. Res. Space Physics 119, 7413-7432, doi:10.1002/2014JA020005.
  18. Huang, C., Q. M. Lu, S. Lu, P. R. Wang, and S. Wang (2014), The effect of a guide field on the structures of magnetic islands formed during multiple X line reconnection: two-dimensional particle-in-cell simulations, J. Geophys. Res. Space Physics 119, 798-807, doi:10.1002/2013JA019249.